Transgenic maize plants by tissue electroporation.

نویسندگان

  • K D'Halluin
  • E Bonne
  • M Bossut
  • M De Beuckeleer
  • J Leemans
چکیده

In this paper, we describe the transformation of regenerable maize tissues by electroporation. In many maize lines, immature zygotic embryos can give rise to embryogenic callus cultures from which plants can be regenerated. Immature zygotic embryos or embryogenic type I calli were wounded either enzymatically or mechanically and subsequently electroporated with a chimeric gene encoding neomycin phosphotransferase (neo). Transformed embryogenic calli were selected from electroporated tissues on kanamycin-containing media and fertile transgenic maize plants were regenerated. The neo gene was transmitted to the progeny of kanamycin-resistant transformants in a Mendelian fashion. This showed that all transformants were nonchimeric, suggesting that transformation and regeneration are a single-cell event. The maize transformation procedure presented here does not require the establishment of genotype-dependent embryogenic type II callus or cell suspension cultures and facilitates the engineering of new traits into agronomically relevant maize inbred lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agrobacterium Mediated Transformation of Maize (Zea mays L.)

Agrobacterium tumefaciens mediated transformation may offer a better alternative than the biolistic gun for genetic transformation of maize plants. This gene delivery system results in a greater proportion of stable, low-copy number transgenic events than does the biolistic gun, and is highly efficient. In the present work, we studied maize transformation using A. tumefaciens by identifying som...

متن کامل

Expression of a Maize Ubiquitin Gene Promoter-bar Chimeric Gene in Transgenic Rice Plants.

We have constructed a chimeric gene consisting of the promoter, first exon, and first intron of a maize ubiquitin gene (Ubi-1) and the coding sequence of the bar gene from Streptomyces hygroscopicus. This construct was transferred into rice (Oryza sativa L.) protoplasts via electroporation, and 10 plants were regenerated from calli that had been selected for resistance to exogenously supplied b...

متن کامل

Transformation of maize with the p1 transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation.

The maize p1 gene encodes an R2R3-MYB transcription factor that controls the biosynthesis of red flavonoid pigments in floral tissues of the maize plant. Genetic and quantitative trait locus analyses have also associated the p1 gene with the synthesis of maysin, a flavone glycoside from maize silks that confers natural resistance to corn earworm. Here, we show directly that the p1 gene induces ...

متن کامل

No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916‐gfp

Endophytic bacterial communities play a key role in promoting plant growth and combating plant diseases. However, little is known about their population dynamics in plant tissues and bulk soil, especially in transgenic crops. This study investigated the colonization of transgenic maize harboring the Bacillus thuringiensis (Bt) cry1Ah gene by Bacillus subtilis strain B916-gfp present in plant ti...

متن کامل

کلون سازی cDNA سیستاتین ذرت (CCs)، و ارزیابی اثر بازدارندگی پروتئین آن در شرایط آزمایشگاهی

Isolating and cloning of plant protease inhibitor (PIs) genes and transforming them to the genome of other plants have paved the way for producing resistant transgenic plants against pests. Knowing that cystatins act as inhibitor factor against cysteine protease, short and long cystatin genes were isolated from maize mRNA. By using specific primers, cDNA of these genes were constructed and cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 4 12  شماره 

صفحات  -

تاریخ انتشار 1992